Source code for easy_rec.python.input.rtp_input_v2
# -*- encoding:utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import logging
import tensorflow as tf
from easy_rec.python.input.input import Input
from easy_rec.python.protos.dataset_pb2 import DatasetConfig
if tf.__version__ >= '2.0':
tf = tf.compat.v1
[docs]class RTPInputV2(Input):
"""RTPInput for parsing rtp fg input format.
the original rtp format, it is not efficient for training, the performance have to be tuned.
"""
[docs] def __init__(self,
data_config,
feature_config,
input_path,
task_index=0,
task_num=1,
check_mode=False,
pipeline_config=None):
super(RTPInputV2,
self).__init__(data_config, feature_config, input_path, task_index,
task_num, check_mode, pipeline_config)
def _parse_rtp(self, lines):
tf_types = [tf.string for x in self._input_field_types]
def _parse_one_line_tf(line):
line = tf.expand_dims(line, axis=0)
field_toks = tf.string_split(line, '\002').values
field_vals = tf.string_split(field_toks, '\003').values
field_vals = tf.reshape(field_vals, [-1, 2])
keys = field_vals[:, 0]
vals = field_vals[:, 1]
temp_vals = [
str(
self.get_type_defaults(self._input_field_types[i],
self._input_field_defaults[i]))
for i in range(len(self._input_fields))
]
for i, key in enumerate(self._input_fields):
msk = tf.equal(key, keys)
val = tf.boolean_mask(vals, msk)
def_val = self.get_type_defaults(self._input_field_types[i],
self._input_field_defaults[i])
temp_vals[i] = tf.cond(
tf.reduce_any(msk), lambda: tf.reduce_join(val, separator=','),
lambda: tf.constant(str(def_val)))
return temp_vals
fields = tf.map_fn(
_parse_one_line_tf,
lines,
tf_types,
parallel_iterations=64,
name='parse_one_line_tf_map_fn')
def _convert(x, target_type, name):
if target_type in [DatasetConfig.FLOAT, DatasetConfig.DOUBLE]:
return tf.string_to_number(
x, tf.float32, name='convert_input_flt32/%s' % name)
elif target_type == DatasetConfig.INT32:
return tf.string_to_number(
x, tf.int32, name='convert_input_int32/%s' % name)
elif target_type == DatasetConfig.INT64:
return tf.string_to_number(
x, tf.int64, name='convert_input_int64/%s' % name)
return x
inputs = {
self._input_fields[x]: _convert(fields[x], self._input_field_types[x],
self._input_fields[x])
for x in self._effective_fids
}
for x in self._label_fids:
inputs[self._input_fields[x]] = fields[x]
return inputs
def _build(self, mode, params):
if type(self._input_path) != list:
self._input_path = self._input_path.split(',')
file_paths = []
for x in self._input_path:
file_paths.extend(tf.gfile.Glob(x))
assert len(file_paths) > 0, 'match no files with %s' % self._input_path
num_parallel_calls = self._data_config.num_parallel_calls
if mode == tf.estimator.ModeKeys.TRAIN:
logging.info('train files[%d]: %s' %
(len(file_paths), ','.join(file_paths)))
dataset = tf.data.Dataset.from_tensor_slices(file_paths)
if self._data_config.file_shard:
dataset = self._safe_shard(dataset)
if self._data_config.shuffle:
# shuffle input files
dataset = dataset.shuffle(len(file_paths))
# too many readers read the same file will cause performance issues
# as the same data will be read multiple times
parallel_num = min(num_parallel_calls, len(file_paths))
dataset = dataset.interleave(
tf.data.TextLineDataset,
cycle_length=parallel_num,
num_parallel_calls=parallel_num)
if not self._data_config.file_shard:
dataset = self._safe_shard(dataset)
if self._data_config.shuffle:
dataset = dataset.shuffle(
self._data_config.shuffle_buffer_size,
seed=2020,
reshuffle_each_iteration=True)
dataset = dataset.repeat(self.num_epochs)
else:
logging.info('eval files[%d]: %s' %
(len(file_paths), ','.join(file_paths)))
dataset = tf.data.TextLineDataset(file_paths)
dataset = dataset.repeat(1)
dataset = dataset.batch(self._data_config.batch_size)
dataset = dataset.map(
self._parse_rtp, num_parallel_calls=num_parallel_calls)
dataset = dataset.prefetch(buffer_size=self._prefetch_size)
dataset = dataset.map(
map_func=self._preprocess, num_parallel_calls=num_parallel_calls)
dataset = dataset.prefetch(buffer_size=self._prefetch_size)
if mode != tf.estimator.ModeKeys.PREDICT:
dataset = dataset.map(lambda x:
(self._get_features(x), self._get_labels(x)))
else:
dataset = dataset.map(lambda x: (self._get_features(x)))
return dataset